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The lipid droplet (LD) is a cellular organelle that stores neutral lipids in cells and has been linked with metabolic
disorders. Caenorhabditis elegans has many characteristics which make it an excellent animal model for studying
LDs. However, unlike in mammalian cells, no LD structure-like/resident proteins have been identified in
C. elegans, which has limited the utility of this model for the study of lipid storage and metabolism. Herein
based on three lines of evidence, we identified that MDT-28 and DHS-3 previously identified in C. elegans LD pro-
teome were two LD structure-like/resident proteins. First, MDT-28 and DHS-3 were found to be the two most
abundant LD proteins in the worm. Second, the proteins were specifically localized to LDs and we identified
the domains responsible for this targeting in both proteins. Third and most importantly, the depletion of MDT-
28 induced LD clustering while DHS-3 deletion reduced triacylglycerol content (TAG). We further characterized
the proteins finding that MDT-28 was ubiquitously expressed in the intestine, muscle, hypodermis, and embryos,
whereas DHS-3 was expressed mainly in intestinal cells. Together, these two LD structure-like/resident proteins
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provide a basis for future mechanistic studies into the dynamics and functions of LDs in C. elegans.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The current upswing in research interest in lipid droplets (LDs)
has been fueled by their connection to human metabolic disorders,
the importance of neutral lipids in food products, and the develop-
ment of biofuels [1-5]. LDs have been found in almost all organisms
from bacteria to mammals and throughout most cell types in multi-
cellular organisms [5,6]. LDs are a cellular organelle that consists of
a neutral lipid core covered with a monolayer phospholipid mem-
brane and proteins. The core contains triacylglycerol (TAG), choles-
terol esters, and ether lipids [7]. LD-associated proteins have been
identified in many species, from bacteria to humans [5], and can be
categorized into four groups: LD structure-like/resident, lipid syn-
thetic and metabolic, membrane traffic, and cell signaling proteins
[8]. Perilipin [9] and adipose differentiation-related protein (ADRP)
[10,11] are considered LD structure-like/resident proteins. They be-
long to the Perilipin family (PLINs), which includes three other
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members: Tip47 [12], S3-12 [13] and OXPAT [14]. PLIN family pro-
teins are only expressed in mammals and Drosophila[15].

Further, LDs have been observed to be closely linked both at a molec-
ular level of communication and also proximity to endoplasmic reticu-
lum [16,17], early endosomes [18], mitochondria [19], peroxisome
[20], and other cellular organelles [21], implying a possible role for
LDs in energy metabolism regulation and intracellular lipid trafficking.
Although LDs are an important cellular organelle and its research has
significant progresses in last decade, the mechanisms behind LD forma-
tion, morphological changes and functions remain elusive.

LDs have been studied in many organisms, providing opportunities
for comparative analyses. Among them C. elegans stands out as an excel-
lent animal model, not only due to the ease of genetic manipulation and
visualization, but also because of the demonstrated linkages between fat
storage, metabolism, reproduction, and the animal's lifespan [22-26].
Our previous study provided a shotgun proteome and identified a LD
marker protein DHS-3. However, the utility of this animal model for
LD research has been limited due to a lack of knowledge regarding LD
structure-like/resident proteins [25,27,28].

Following up on our previous study where we identified a LD marker
protein, DHS-3, in C. elegans[29], we have performed a comprehensive
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proteomic study of LDs isolated from C. elegans. We have identified two
major LD proteins in the animal, MDT-28 and DHS-3. Both proteins
were localized to LDs by fluorescence microscopy. DHS-3 was only
expressed in the intestine, whereas MDT-28 was located in most tissues.
We used mutational analysis to identify the regions of the proteins re-
sponsible for LD targeting. Finally, we demonstrated that the depletion
of MDT-28 induces LD clustering while DHS-3 deletion reduces TAG.
These data indicate that MDT-28 and DHS-3 are two LD structure-like/
resident proteins in the worm, which will facilitate the study of LDs
and lipid metabolism in this important animal model.

2. Materials and methods
2.1. Strains and culture conditions

The N2 Bristol strain of C. elegans was used as wild type in this study.
The dhs-3(gk873395) worm was provided by the Caenorbhabditis
Genetics Center (CGC) at the University of Minnesota. The mdt-
28(tm1704) and F22F7.1(tm5652) worms were provided by National
BioResource Project (NBRP). The Pdhs-3::dhs-3::GFP, Pmdt-28::mdt-
28::mCherry, and PF22F7.1::F22F7.1::GFP worms were constructed in
our laboratory. Strains Pvha-6::dhs-3::GFP (single copy) and Pmdt-
28::mdt-28::mRuby (single copy) were generated by professor Ho Yi
Mak. Muscle and hypodermis specific expression markers Pmyo-3::GFP
and Pceh-14::GFP were crossed with Pmdt-28::mdt-28::mCherry to
illuminate the tissue distribution of MDT-28. The Pvha-6::dhs-3::GFP,
mdt-28, Pvha-6::dhs-3::GFP, F22F7.1, Pvha-6::dhs-3::GFP, mdt-28, and
F22F7.1 strains were prepared by our laboratory for the mdt-28 and
F22F7.1 phenotype study. All worms were maintained on agar plates
seeded with an OP50 bacterial lawn using a standard protocol.

The CHO K2 cell line was cultured by a method described previously
[30] and used for the DHS-3 and MDT-28 lipid droplet targeting
experiment.
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2.2. Isolation of lipid droplets

LDs were isolated by the method previously described [29,31]. First,
about 4 x 10° young adults were harvested and washed with Phosphate
Buffered Saline (PBS)/0.001% Triton-X100 and suspended in 20 ml
buffer A (25 mM Tricine, pH 7.6, 250 mM sucrose, and 0.2 mM
phenylmethylsulfonylfluoride), followed by homogenization using a
Polytron (Cole-Parmer® Labgen™ 125 and 700 Tissue Homogenizers).
The homogenate was centrifuged at 1000 g for 30 s. The supernatant
was homogenized again by nitrogen cavitation (Ashcroft Duralife Pres-
sure Gauge) after a 15 min, 750 pounds per square inch (PSI) incubation
on ice, and was then centrifuged at 1000 g for 10 min. 9 ml of post-
nuclear supernatant (PNS), was collected and loaded into an SW40
tube. The homogenate was overlaid with 3 ml of buffer B (20 mM
HEPES, pH 7.4, 100 mM KCl, and 2 mM MgCl,) and was centrifuged at
12,628 g for 1 h at 4 °C. The LD fraction was carefully collected from
top layer of the gradient and washed with 200 pl buffer B 3 times. For
embryonic LD isolation, the embryos were harvested using a bleach
method [32]. Briefly, 4 x 10° 3-4 day old adults were collected into a
15 ml tube and resuspended in a 7 ml of ddH,0. 1 ml of 5 N NaOH
and 2 ml of bleach buffer (5% solution of sodium hypochlorite) were
added and then vortexed briefly. The sample was incubated at room
temperature until the worms dissolved (usually 5-8 min). The sample
was then centrifuged for 1 min at 1500 g. The supernatant was
discarded and the pellet was washed 5 times. The same LD isolation pro-
cedure described above was then carried out, starting with the nitrogen
cavitation.

2.3. Protein preparation and Western blot
Proteins were precipitated using 100% acetone, and were collected

by centrifugation at 20,000 g for 10 min. Protein pellets were dissolved
in 2 x SDS sample buffer at a final concentration of about 1 mg/ml for
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Fig. 1. Proteomic analyses of C. elegans lipid droplets. A. LDs were isolated from wild type adult animals, the proteins were separated by SDS-PAGE, and were stained using Colloidal blue.
The LD lane was sliced into 34 pieces (arrow indicate cutting sites) and subjected to mass spectrometry protein identification as described previously [30]. B. (a) The current proteome was
compared with previous LD proteomes of C. elegans using a Venn diagram. (b) The current proteome was compared with previous proteomic studies of the species reported except
C. elegans. C. Proteins of the two major bands; band 16 (a) and band 21 (b) from three independent LD isolations and proteomic analyses are shown in two Venn diagrams. Peptide num-
bers for proteins identified in band 16 (c) and band 21 (d) are represented in the bar graphs.
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Fig. 2. Identification of lipid droplet abundant proteins. The deletion mutants of mdt-28 and dhs-3 were obtained, and the deletion mutant of F22F7.1 and double mutant of mdt-28
and F22F7.1 were generated. LDs were isolated from all these mutants and wild type. The LD proteins were extracted and subjected to Colloidal blue staining and Western blot.
A.a) MDT-28 was examined in LD, total membrane (TM), cytosol (Cyto), and postnuclear supernatant (PNS) of wild type and in LD of mdt-28 deletion mutant using Western blot
with anti-MDT-28 (upper panel). Arrow points MDT-28 band. Protein loading was detected by Coomassie blue staining (lower panel). b) LD proteins were compared between
wild type and mdt-28 deletion mutant using Colloidal blue staining. Band 16 is pointed by a black arrow and a new band is pointed by a red arrow. B. a) F22F7.1 was examined in
four fractions of wild type and in LD of mdt-28 deletion mutant using Western blot with anti-F22F7.1 (upper panel). Arrow points F22F7.1 band. Protein loading was detected by
Coomassie blue staining (lower panel). b) LD proteins were compared between wild type and double mutant of mdt-28 and F22F7.1 using Colloidal blue staining. Band 16 is
pointed by a black arrow. C. a) DHS-3 was examined in LDs of wild type and in four fractions of dhs-3 deletion mutant using Western blot with anti-DHS-3 (upper panel).
Arrow points DHS-3 band. Protein loading was detected by Coomassie blue staining (lower panel). b) LD proteins were compared between wild type and dhs-3 deletion mutant

using Colloidal blue staining. Band 21 is pointed by a black arrow.

30 min at room temperature, and were then denatured at 95 °C for
5 min. The proteins were separated by SDS-PAGE and analyzed using
Western blot by a method described in our previous study [30]. Poly-
clonal antibodies for DHS-3, MDT-28, and F22F7.1 were prepared by
AbMax Biotechnology Co., Ltd.

2.4. Mass spectrometry analysis

Lipid droplet proteins were separated on a 10% SDS-PAGE gel and
subjected to colloidal-blue staining. The lane with LD proteins was cut
into 34 slices. In-gel digestion of each slice was performed as follows:
First, the gel was dehydrated with 100% acetonitrile and then the

proteins were reduced with 10 mM DTT in 25 mM ammonium bicar-
bonate at 56 °C for 1 h. The proteins were then alkylated using 55 mM
iodoacetamide in 25 mM ammonium bicarbonate in the dark at room
temperature for 45 min. Finally, the gel pieces were thoroughly washed
with 25 mM ammonium bicarbonate in water-acetonitrile (1:1, v/v)
solution and were completely dried in a SpeedVac. Then proteins were
incubated with 10 pl trypsin solution (10 ng/ul in 25 mM ammonium bi-
carbonate) for 30 min on ice. 30-40 pl of 25 mM ammonium bicarbon-
ate was added after removing the excess enzyme solution. 12 hours
later, 5% formic acid was added to stop the digestion reaction. A Cyg
trap column was used to capture the peptide solution, which was eluted
and then subjected to nano-LC-ESI-LTQ MS/MS analysis. The LTQ mass
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Fig. 3. DHS-3 is not expressed in embryos. A. LDs were isolated from wild type embryos and the LD proteins were subjected to proteomic analysis. The proteomes of the wild type adult and
the mdt-28 mutant were compared. B. The major proteins from proteomes of the wild type adult, the mdt-28 mutant adult, and wild type embryos were compared and presented with
peptide numbers. C. Analysis by Coomassie blue staining and Western blot of LD proteins from wild type adults and wild type embryos. (a) Upper panel: Specific proteins in cellular frac-
tions were examined by Western blot with polyclonal DHS-3 antibodies; lower panel: Coomassie blue-stained SDS-PAGE as a loading control. (b) LD protein profiles were presented by

Colloidal blue-stained SDS-PAGE.

spectrometer was operated under data-dependent mode and was set at
an initial 400-2000 Da MS scan range. The five most abundant ions
were selected for subsequent collision-activated dissociation. All MS/
MS data were searched against the C. elegans protein database
Wormpep218.

2.5. Lipid droplet targeting sequences of MDT-28 and DHS-3

Following hydrophobicity and secondary structure prediction, DNA
coding for DHS-3 was truncated into three fragments coding for
amino acids 1-50, 50-150, and 150-307. The fragments and full length
of DHS-3 were ligated into EGFP-N1, and were then transfected into
CHO K2 cells. After 12 hours, the cells were harvested and fixed with
4% PFA for 30 min, permeabilized with 0.02% Triton X-100 for 8 min,
and then stained with LipidTox deep red for 30 min. The prepared sam-
ples were examined using confocal microscopy. Similarly, MDT-28 was
fragmented into three pieces (coding for 1-210, 210-275, 275-418
amino acids), ligated to EGFP-N1, and then transfected into the CHO
K2 cells for fluorescence microscopy.

2.6. Staining and confocal microscopy

For the neutral lipid dye feeding approach, the three dyes (Nile red,
Bodipy, LipidTox) were diluted 1:1000 with PBS and 200 pl of the mix-
ture was applied to an OP50 lawn in a Nematode Growth Media (NGM)
plate. Then Pdhs-3::dhs-3::GFP L4 stage worms were transferred onto
the plate. The worms were ready for live image observation after
12 hours.

Fixed Oil Red O and Nile red staining of adult worms was carried out
as previously described [29,33]. The stained worms were laid on a 2%
agar plate, and then subjected for confocal image analysis. For fixed
Bodipy staining of embryos, we used the same protocol as for the
fixed Nile red staining of adult worms.

2.7. SRS and fluorescence imaging
Stimulated Raman scattering (SRS) and fluorescence microscopy

setup and imaging methods have previously been described [28].
Pump (780 nm-990 nm, tunable) and Stokes (1064 nm) laser beams

Fig. 4. Localization and tissue distribution of primary LD proteins. A. LD localization of DHS-3, MDT-28, and F22F7.1. Transgenic worms with Pdhs-3::dhs-3::GFP (a), Pmdt-28::mdt-
28::mcherry (b), and PF22F7.1-22::F22F7.1::GFP (¢), respectively, were constructed and then visualized by confocal microscopy as described previously [29]. B. Tissue distribution of
MDT-28 and DHS-3. The transgenic animals co-expressing Pmdt-28::mdt-28::mcherry and Pdhs-3::dhs-3::GFP (a and b were duplicate with different magnification of microscopy),
Pmdt-28::mdt-28::mcherry and Pmyo-3::GFP (c), and Pmdt-28::mdt-28::mcherry and Pceh-14::GFP (d) were generated and examined using confocal microscopy. C. Transgenic worms
expressing Pdhs-3::dhs-3::GFP were made and visualized by confocal microscopy as described in the methods. Upper panel: GFP image; lower panel: merged picture of DIC and

GFP. Bar = 5 um.
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from a picoEMERALD one box laser (APE, Germany) were coupled into a
modified laser scanning confocal microscope (IX81/FV1000, Olympus)
optimized for near-infrared throughput. A 60x water objective
(UPlanAPO/IR, 1.2 NA, Olympus) and an oil immersion condenser (NA
1.4, Olympus) were used for high-resolution imaging. GFP fluorescence
used a two-photon excited using pump laser at 860 nm, and the fluores-
cence signal was detected in the backward direction by a PMT with a
dichroic beam splitter (FF746-SDi01, Sermrock). Lipid SRS imaging
was taken using 816.7 nm pump laser and 1064 nm Stokes laser
based on Raman shift of CH2 chemical bonds (2845 cm™!). The GFP im-
ages and SRS images were aligned and merged using Image] (NIH).

2.8. Mapping identified lipid droplet proteins to Homo sapiens

The analysis reported in Table S2 was performed using the NCBI
BLASTP program with default parameters but e-value cutoff set to
1.0E-3. Where more than one gene was mapped, the best hit gene
(with lowest BLAST e-value) is listed.

3. Results
3.1. Identification of two most abundant lipid droplet proteins in C. elegans

To identify LD structure-like/resident proteins in C. elegans, LDs were
isolated from wild type animals. Proteins from the isolated LDs were
separated using SDS-PAGE, and were stained using Colloidal blue. The
lane with LD proteins was then sliced into 34 pieces corresponding
to major stained protein bands. The gel pieces were then subjected to
in-gel digestion and the separated peptides were identified using prote-
omic analysis (Fig. 1A, Table S1) [30]. In total, 154 proteins were identi-
fied and classified into 9 categories (Fig. S1, Table S2). Of these, 113 had
been previously identified in a study of C. elegans LDs (Fig. 1Ba) [29]. Of
the proteins found, 87% have been previously identified in isolated LDs
from other organisms except C. elegans (Fig. 1Bb), which confirms the
consistency of the technique with previous studies. To identify LD
structure-like/resident proteins in C. elegans that are similar to PLIN1
and 2 in mammals, we initially focused on the most abundant proteins
of the isolated LDs. The two bands with the highest intensity are marked
with red numbers, 16 and 21 in the stained SDS-PAGE (Fig. 1A). To de-
termine the major proteins in these two bands, three replicate LD isola-
tions were conducted and the LD proteins were separated by SDS-PAGE.
Bands 16 and 21 were sliced and the proteins determined using prote-
omic analysis. Three proteins in band 16 (Fig. 1Ca) and six proteins in
band 21 (Fig. 1Cb) were identified in all three independent LD isola-
tions. The major protein from band 16 was identified as MDT-28
(Fig. 1Cc), which is a component of the multi-subunit transcriptional
mediator complex. Band 21 was dominated by DHS-3 (Fig. 1Cd),
which was identified as LD marker protein in a previous study [29].

To verify that MDT-28 was the major protein in band 16 an mdt-28
deletion mutant (tm1704 x 4) was obtained and its LDs were isolated.
We then compared proteins in the isolated LDs between the mdt-28
deletion mutant (tm1704 x 4) (Table S3) and the wild type using com-
parative proteomics, Western blot analysis, and total protein staining
(Fig. 2A). The LD proteins from the wild type animals were analyzed
by Western blot using a polyclonal antibody against MDT-28, generated
by ABMAX. MDT-28 was detected in the LD fraction but not in other cel-
lular fractions such as the cytosol (Cyto), total membrane (TM), and
post-nuclear supernatant (PNS), suggesting that MDT-28 is a LD resi-
dent protein (Fig. 2Aa, lanes 2 to 5). When the quantity of PNS proteins
was increased 10-fold or 50-fold (as represented by protein staining)
(Fig. 2Aa, lower panel, lanes 6 and 7), MDT-28 could be detected in
PNS (Fig. 2Aa, lane 7).

As expected, no MDT-28 signal was detected in the mutant LDs by
Western blot analysis (Fig. 2Aa, lane 1 and arrow), confirming the dele-
tion of the protein. An examination of the stained SDS-PAGE also reveals
that band 16 was absent from isolated LDs of the mdt-28 deletion

mutant (Fig. 2Ab, lane 3 and arrow). This verifies that band 16 primarily
consisted of MDT-28 protein, in agreement with the proteomic result
(Fig. 1Cc). However, a new band also appeared in the mutant LDs, hav-
ing a slightly higher molecular weight than MDT-28 (Fig. 2Ab, lane 3
and red arrow). The band was sliced from the gel and subjected to a pro-
teomic analysis. This protein was identified as F22F7.1, which was con-
firmed by Western blot (Fig. 2Ba, lanes 2 to 7). Interestingly, Western
blot also demonstrated in substantial increase in the quantity of
F22F7.1 in mdt-28 deletion mutant LDs, compared with the wild type
(Fig. 2Ba, compare lane 1 to 2 and arrow), in agreement with data pre-
sented in Figs. 1C, 2Ab in lane 3, and 2Bb in lane 3.

Based on sequence similarity, F22F7.1 is similar to CGI-49, a mam-
malian LD protein (Fig. S3a), suggesting that F22F7.1 (CGI-49) functions
as a redundant protein of MDT-28. Thus, we acquired the F22F7.1 dele-
tion mutant to determine if there were other major proteins in the band.
Since MDT-28 and F22F7.1 have similar molecular weights we crossed
the two knockouts to produce a double mutant. LDs were then isolated
from the double deletion mutant, the proteins were separated using
SDS-PAGE, and were then stained with Colloidal blue. Neither the
MDT-28 nor the F22F7.1 containing bands were present, indicating
that F22F7.1 made up the majority of the new band (Fig. 2Bb, lane 3
and arrow). Together, these data demonstrate that MDT-28 is main res-
ident protein of C. elegans LDs, and F22F7.1 is significantly increased on
LDs following MDT-28 deletion.

We then sought to identify the major protein of the second promi-
nent band, marked as band 21 (~36 kDa) (Fig. 1A). We back-crossed
the dhs-3 deletion mutant (gk873395) against the wild type six times
and then isolated LDs. We compared the protein patterns of the mutant
and wild type by Colloidal blue staining and Western blot. The knockout
of DHS-3 in the dhs-3 mutant was confirmed by Western blot (Fig. 2Ca,
lane 2 and arrow). Band 21 was barely detectable in the stained SDS-
PAGE of the dhs-3 deletion mutant (Fig. 2Cb, lane 3 and arrow). These
results verified that band 21 mainly consisted of DHS-3 protein, which
is consistent with the proteomic data (Fig. 1Cd).

Next, to provide LD proteome for study of lipid metabolism during
the development of C. elegans, we purified LDs from isolated embryos
(Fig. S2 and Table S4) [32] and conducted a shotgun proteomic analysis
(Table S4). We then compared this proteome with that from young
adults of wild type and also the mdt-28 deletion mutant, and observed
that 154 proteins were common to all three proteomes (Fig. 3A). By
comparing all three proteomes based on their peptide numbers, we
also revealed that there was a higher expression of MDT-28 and
C25A1.12 (CGI-58 based on sequence similarity) in the embryonic LDs
(Fig. 3B), and lower expression of HSP-3, succinate dehydrogenase com-
plex, subunit A-1 and 2 (SDHA-1 and SDHA-2) in both mdt-28 mutant
and embryonic LDs (Fig. 3B). Interestingly, we found that DHS-3 was ab-
sent in embryonic LD proteome (Fig. 3B and red arrow).

We then performed Western blot analysis to verify the proteomic re-
sults. It was clear that no DHS-3 signal was detected in embryonic LD
proteins (Fig. 3Ca, lane 2 and arrow). DHS-3 could not be detected in
other cellular fractions either, suggesting that DHS-3 was not expressed
in embryos (Fig. 3Ca, lanes 3-5). This was consistent with the absence of
band 21 in Coomassie stained gels proteins from the embryonic LDs
(Fig. 3Cb, lane 2). Thus, using proteomic and biochemical studies, we
identified the two most abundant proteins of C. elegans LDs, MDT-28
and DHS-3.

3.2. Location of MDT-28, DHS-3, and F22F7.1

To examine the physiological location of DHS-3, MDT-28, and
F22F7.1 in C. elegans, we performed a morphological analysis. Initially,
we generated transgenic animals with Pmdt-28::mdt-28::mCherry,
Pdhs-3::dhs-3::GFP, and PF22F7.1::F22F7.1::GFP, and observed the cellu-
lar localization of these fusion proteins within the living animals using
confocal microscopy. DHS-3 (Fig. 4Aa), MDT-28 (Fig. 4Ab), and
F22F7.1 (Fig. 4Ac), were mainly present on ring-like structures,
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suggesting that they were surrounding LDs, verifying the results from
proteomic and biochemical studies.

To determine the location of these proteins under lower expression
levels, transgenic animals carrying a single copy of the transgenes;
Pvha-6::dhs-3::GFP and Pmdt-28::mdt-28::mRuby were also generated
and examined using confocal microscopy. As before, ring structures of
the DHS-3 and MDT-28 fusion proteins were seen in the transgenic an-
imals, further confirming the LD location of these two proteins (Fig. S2a
and b). These results, combined with our proteomic and biochemical
data, suggest that MDT-28 and DHS-3 are LD resident proteins of
C. elegans.

3.3. Tissue distribution and lipid droplet targeting of MDT-28 and DHS-3

After confirming the LD location of MDT-28, DHS-3, and F22F7.1,
we then proceeded to determine their tissue distributions. We
focused on MDT-28 and DHS-3, since they were the two most abun-
dant LD resident proteins of C. elegans. C. elegans strains expressing
Pmdt-28::mdt-28::mCherry and Pdhs-3::dhs-3::GFP were crossed
to generate a double fluorescent animal. When the animal was

A
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examined, we observed that all GFP signalswere co-localized with
the mCherry signal. However, some mCherry signal was indepen-
dent of the GFP (Fig. 4Ba3 and Bb3).

Based on the morphology, the DHS-3 seemed to be mainly localized
on intestinal LDs. To determine the tissue distribution of the MDT-28
which was not overlapping with GFP signals, we crossed Pmdt-
28::mdt-28::mCherry with strains expressing muscle specific Pmyo-
3::GFP (Fig. 4Bc2) [34] and hypodermis specific Pceh-14::GFP
(Fig. 4Bd2) [35]. We observed co-localizing fluorescence of mCherry
and GFP in both (Fig. 4Bc3 and Bd3), suggesting a distribution of
MDT-28 in the muscle and hypodermis. Moreover, in agreement with
the proteomic and biochemical results (Fig. 3B and C), DHS-3::GFP
was not detected in the embryos, but interestingly was found in the
vulva of adults (Fig. 4C).

To further characterize MDT-28 and DHS-3 as LD resident proteins of
C. elegans, their LD targeting mechanisms were examined. Truncation
mutations based on their hydrophobicity profiles and potential o-
helices (Fig. 5Aa, Ab) were constructed and fused with GFP. The truncated
GFP fusion proteins were expressed in Chinese hamster ovary (CHO K2)
cells, and their cellular localization examined using confocal microscopy.

418 aa

v

50 100

200

400

i

HHIIIIHIIIII\I

v 11

\IH\

Il

|

E

Iz

s

I

|

IVIT i, G

M2 S GFr
M3 L _IGFpP
M4 S Gre
b Adh_short/adh_short C2 307 aa
0 100 200 300

8
t\|”|||||"ﬂl|ll\lﬂll]l\ \I“IHHIIITI

:

|

Il

u

|

i

b

|

["|||”"”E““””|m"m" oo

ol

i

|

i

DI

D2 | _|GFpP

o3 e GFP

D4

S GFp

Fig. 5. LD targeting of MDT-28 and DHS-3. A. Truncations of MDT-28 (a) and DHS-3 (b) were made based on hydrophobicity (indicated with red vertical lines) and potential alpha helices
(indicated with blue vertical lines). B-C. Truncated proteins were fused with GFP, expressed in Chinese hamster ovary (CHO K2) cells, and co-imaged with LipidTox staining using confocal
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Fig. 5 (continued).

In addition to the LD localization of the full length proteins (Fig. 5B-
M1 and C-D1), truncation mutants containing amino acids 211 through
275 of MDT-28 (Fig. 5B-M3) and 1 through 50 of DHS-3 (Fig. 5C-D2)
formed ring structures around LipidTox-stained LDs in CHO K2 cells.
Other fragments of two proteins were detected in the cytosol, and
none of these fragments were found on other membrane structures.
These results not only identified the protein region of MDT-28 and
DHS-3 responsible for LD targeting but also provide further confirma-
tion that these are LD proteins.

Lacking confirmed LD marker proteins, the study of this organelle in
C. elegans has depended on several lipid dyes. These lipid dyes, such as
Oil Red O, Nile red, boron-dipyrromethene (Bodipy), and LipidTox
have facilitated lipid research in C. elegans but have also been found to
be problematic, as previously reported [27,28,36]. Using the newly ver-
ified LD resident protein DHS-3::GFP we examined whether these dyes
stained LDs in C. elegans. We either fed the transgenic worm, Pdhs-
3::dhs-3::GFP with these dyes or fixed the transgenic worm then stained
them with these dyes. It was clear that the fluorescence introduced by
feeding the animals Nile red (Fig. 6Aa3) and LipidTox (Fig. 6Ac3) did
not co-localize with DHS-3::GFP. Some weak signal from feeding Bodipy
was localized inside of the DHS-3::GFP rings (Fig. 6Ae3). In contrast, the
use of all four dyes post-fixation gave signals that were well co-localized
with DHS-3::GFP (Fig. 6Ab3, Ad3, Af3, and Ag3).

To overcome the limitations associated with lipid staining, especially
the requirement for the fixation of the animals, methods using coherent
anti-Stokes Raman scattering (CARS) microscopy [37] and stimulated
Raman scattering (SRS) microscopy [28] were established using living
animals. We then used DHS-3::GFP to determine whether the SRS signal
detected represented LDs in the animal. When strain Pdhs-3::dhs-3::GFP
was visualized by SRS microscopy the SRS signal was almost entirely lo-
cated inside of DHS-3::GFP ring structures, suggesting that the SRS sig-
nals indeed represented C. elegans LDs (Fig. 6B).

3.4. dhs-3 and mdt-28 regulate lipid droplet phenotype

Since MDT-28 and DHS-3 are the two major resident proteins of
C.elegans LDs, it is necessary to determine their functions, including
their effects on LD morphological regulation. Wild type and dhs-3
mutant worms were fixed and stained with Nile red (Fig. 7Aa and
Ab), and the images quantified for LD size. The results show a clear
decrease in LD size in the dhs-3 mutant (Fig. 7Ba). There was also a
notable reduction in TAG content in the dhs-3 mutant (Fig. 7Bb), sug-
gesting that DHS-3 is essential to maintain LD size and TAG content.

We then examined the effect of MDT-28 on the organelle including
LD numbers and size. To do so, we generated a dhs-3 single copy trans-
genic worm with an intestinal specific promoter, Pvha-6::dhs-3::GFP
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Fig. 6. Comparison with other lipid droplet staining methods. A. Pdhs-3::dhs-3::GFP strain was stained with commercial neutral lipid dyes by either feeding or labeling after fixation, and
examined using confocal microscopy. B. Pdhs-3::dhs-3::GFP worms were imaged using stimulated Raman scattering (SRS) microscopy [28]. DHS-3::GFP image was taken by two-photon
excited fluorescence mode. The corresponding lipid SRS image of the same area was taken using SRS based on CH2 chemical bonds. Bar = 5 pm.

(Fig. 7Ca) and crossed it with mdt-28 (Fig. 7Cb). The mdt-28 deletion mu- worm. Chief among the findings is the identification of two structure-
tation resulted in clustered LDs (Fig. 7Cb and Da). The clustering could be like/resident proteins, DHS-3 and MDT-28, that have a clear phenotype
rescued by fosmid WRM0612Df08 (Fig. 7Cc). The mdt-28 mutation result- when knocked out, confirming their centrality to LD structure and func-
ed in a slightly reduced TAG level in C. elegans (Fig. 7Db). Together, the tion. Collectively, the results presented here provide a roadmap for fu-
data suggest that, compared with DHS-3, MDT-28 plays a less important ture mechanistic research into lipid storage and metabolism in this
role in maintaining LD TAG content, but it does appear to protect LDs important genetic model.
from aggregation that may be an initiating step of in LD fusion. In mammalian cells, PLINT and PLIN2 are LD structure-like/resident
proteins [38] that are almost exclusively located on LDs. Previous stud-
ies have not only utilized them as marker proteins but have also re-
vealed that these two proteins play essential roles in the storage and
This comparative proteomic study of LDs from wild type and mutant mobilization of cellular neutral lipids. Unfortunately, no PLIN family
C. elegans, combined with biochemical experiments with novel antibod- proteins have been found in C. elegans, limiting the use of this animal
ies, provides a systematic analysis of LD-associated proteins in the in study of lipid metabolism.

4. Discussion
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Fig. 7. dhs-3 and mdt-28 regulated lipid droplet morphology. A. L4 worms of wild type strain (a) and dhs-3 mutant strain (b) were fixed and stained with Nile red. Bar = 10 pm. B. The
diameter of stained LDs (a) and TAG content/total proteins (b) were quantified. C. L4 worms of the wild type strain (a), mdt-28 deletion mutant (b), and mdt-28 rescued strain
(c) were crossed with Pvha-6::dhs-3::GFP and examined by fluorescence microscopy. D. The degree of LD clustering (a) and TAG content/total proteins (b) were quantified. Bar = 5 pm.
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Fig. 7 (continued).

In the present work, we identified the two most abundant proteins
in C. elegans LDs, DHS-3 and MDT-28, and confirmed their LD location
using proteomic, biochemical and morphological studies (Figs. 2 and
3).In addition, we determined the regions of these proteins responsible
for their LD targeting (Fig. 4). The dhs-3 and mdt-28 mutants had clear
phenotypes in LD size, TAG content and clustering (Fig. 7) possibly
linking them with the functional role mammalian PLIN1 and PLIN2 in
protecting LD TAG from lipolysis. Based on the observation that these
proteins are abundant (main bands) (Figs. 1 and 2), restricted to LDs
(Figs. 2, 3 and 4), and have roles in regulating LD size, TAG content,
and clustering (Fig. 7), we conclude that DHS-3 and MDT-28 are LD
structure-like/resident proteins in C. elegans, similar to PLIN family pro-
teins in mammalian cells.

Having identified DHS-3, MDT-28, and F22F7.1, another LD protein of
note, we searched for mammalian homologues based on amino acid
sequence similarity. As shown in the domain composition map in
Fig. 5Aa, MDT-28 contains a MED-28 (mediator complex subunit 28,
mediator of RNA polymerase II, transcriptional regulator) domain. An
adh_short (short chain dehydrogenase) domain was found in DHS-3,
indicating similarity to 17BHSD11. Many short chain dehydrogenase/
reductase (SDR) family proteins are associated to LDs and involved in
lipid metabolism, including 17RHSD2, 17RHSD7, 17BHSD11, 173HSD13,
3BHSD1, DHRS3[8,39-43]. Finally, F22F7.1 is similar to CGI-49, another
mammalian LD protein (Fig. S3a).

Our data suggest that MDT-28 is a ubiquitously distributed LD pro-
tein similar to that of ADRP/PLIN2 [10] while DHS-3 is more like a
single-tissue expressed LD protein like PLIN1 [15] in mammals. The dis-
tinct tissue distributions of DHS-3 and MDT-28 (Fig. 4B) demonstrate
the heterogeneity of LDs in the animal, which may prove useful in deter-
mining the breadth of functional roles LDs play in an organism.

Furthermore, with these two newly identified LD resident proteins, it
becomes possible to search for genes governing lipid storage in specific
tissues of C. elegans by RNAI screening. The discovery that F22F7.1 was
increased in LDs when MDT-28 was deleted (Fig. 2), suggests that
F22F7.1 may provide functional redundancy with MDT-28. This obser-
vation may provide a clue to uncover the function of the homologous
CGI-49 in mammalian cells.

In conclusion, this work provides a molecular basis for future re-
search into fat storage and metabolism in C. elegans and further estab-
lishes C. elegans as a powerful model for the study of lipid storage-
related disease states.
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