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We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional
(3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly
during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the
absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the
human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state,
centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical
model in which lengthwise compaction of chromosomes by condensin II during mitosis determines
chromosome-scale genome architecture, with effects that are retained during the subsequent interphase.
This mechanism likely has been conserved since the last common ancestor of all eukaryotes.

T
he mechanisms controlling nuclear
architecture at the scale of whole chro-
mosomes remain poorly understood.
To investigate principles of genome
folding, we performed in situ Hi-C (1)

on 24 species, representing all subphyla of
chordates, all seven extant vertebrate classes,
seven of nine major animal phyla, as well as
plants and fungi (Fig. 1, figs. S1 and S2, and
table S1). For 14 species, there was no existing
chromosome-length reference genomeassembly.

For these, we upgraded existing genome assem-
blies or assembled a reference genome entirely
from scratch (2) (table S2). Together, these
species offer a comprehensive overview of
nuclear organization since the last common
ancestor of all eukaryotes.
The resulting maps reveal four features of

nuclear architecture at the scale of whole
chromosomes (Fig. 1 and fig. S1). First, some
species, such as the red piranha, exhibit en-
hanced contact frequency between loci on the

same chromosome. This is consistent with,
though not necessarily identical to, classical
chromosome territories as traditionally ob-
served by cytogenetics—when a chromosome
occupies a discrete subvolume of the nucleus,
excluding other chromosomes (3). Second, spe-
cies like the yellow fever and southern domestic
mosquitoes exhibit prominent contacts between
centromeres. Third, species like the ground
peanut exhibit prominent contacts between
telomeres. Finally, species like bread wheat
exhibit an X-shape on the chromosomal map
(Fig. 1 and figs. S1, S2, S3, and S4). We refer
to these last three features as Rabl-like, be-
cause they are reminiscent of theRabl chromo-
some configuration (4), in which centromeres
cluster and chromosome arms are arranged
in parallel.
To identify these architectural features in

an unbiased fashion, we developed aggre-
gate chromosome analysis (ACA), whereby
contact maps for each chromosome are re-
scaled and summed and then used to score
each feature (2) (figs. S3 and S6 and table S3).
All species that are not holocentric exhibit
at least one feature. The architectural features
can be divided into two clusters, type-I and
type-II, on the basis of how likely the features
are to co-occur (fig. S7 and table S4). Type-I
includes the three Rabl-like features: centro-
mere clustering, telomere clustering, and a
telomere-to-centromere axis. Type-II includes
only chromosome territories. Consequently,
species can also be subdivided depending on
which feature cluster is more strongly exhib-
ited (table S3).
Homologs tend to be separated or paired

depending on the species. We found that type-
II species typically exhibit homolog separa-
tion, whereas this is less frequent among type-I
species (figs. S8 and S9 and table S5). We de-
veloped an algorithm, dubbed 3D-DNA Phaser,
that exploits this separation, when present, to
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assign variants to individual homologs, pro-
ducing chromosome-length haploblocks for
multiple species. When homologs are not
separated, as in Drosophila melanogaster, we
show that this approach cannot be used. Taken

together, these data are consistentwith amodel
in which features of genome architecture ap-
peared and disappeared over billions of years,
as lineages switched between Rabl-like and
territorial architectures.

Next, we sought to understand the mecha-
nismunderlying this switching behavior.When
investigating the transition between the two
architectures, we noted that mosquitoes, which
display type-I features (Fig. 1), also lack a
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Fig. 1. A comprehensive overview of nuclear architecture across evolution.
Aggregate chromosome analysis (ACA) on in situ Hi-C maps of 24 species.
In ACA, chromosome arms are rescaled to a uniform length and then the
signal of all intra- and interchromosomal contacts is aggregated. This yields
an aggregate portrait of genome folding in a species at the scale of whole
chromosomes. The 24 ACA plots are rescaled to fit into an octagon, with
a depiction of the corresponding species flanking each ACA plot. The species

span three kingdoms: animals (yellow), fungi (blue), and plants (green); their
evolutionary relationship is represented with a cladogram (2). Each corner shows
an example ACA map and a schematic drawing of one of the four chromosome-
scale features. The location of these example maps does not correspond
to the architecture type of the closest species in the figure. Presence of the
condensin II subunits in each species is indicated by solid black circles (left to
right: SMC2, SMC4, CAP-H2, CAP-G2, and CAP-D3).
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subunit of the condensin II complex (5),
which promotesmitotic chromosome compac-
tion (6). We therefore searched for condensin
II subunits in the genomes of all 24 species.
Eight species lacked one or more condensin II
subunit(s) (table S6) and exhibited Rabl-like
features (table S3). Because these organisms lie
far apart on the evolutionary tree, type-I archi-
tectural features and the loss of condensin II
subunits appear to have coevolved repeatedly.
This could indicate that condensin II strengthens
chromosome territories or counteracts Rabl-
like features.
Notably, of the eight species, five lacked all

condensin II subunits, whereas the other three

species only lacked CAP-G2. Previouswork has
shown that condensin complexes lacking
the G-subunit still localize to DNA but yield
elongated chromosomes (7). Condensin com-
plexes in these species may thus be impaired,
at least partially, in their ability to shorten
chromosomes.
Humans exhibit type-II genome architecture,

with strong chromosomal territories and no
Rabl-like features (Fig. 2A). Moreover, human
genomes contain all condensin II subunits.
Would disruption of condensin II in human
cells then interfere with chromosome territo-
ries and enhance the strength of type-I features?
To test this, we performed in situ Hi-C onHap1

cells lacking the condensin II subunit CAP-H2
(Fig. 2A, figs. S14 and S15, and table S7). Dis-
ruption of this core condensin II subunit pre-
vents recruitment of the CAP-D3 and CAP-G2
subunits to the complex and renders the com-
plex fully nonfunctional.
DCAP-H2 cells exhibited weaker chromo-

some territories and much stronger contacts
between centromeres in trans (Fig. 2A; fig. S15,
B and C; and table S8). Immunofluorescence
microscopy revealed that in DCAP-H2 cells the
centromeres are clustered together. Disruption
of condensin II thus transforms the folding
of the human genome into a type-I–like con-
figuration (Fig. 2, B and C, and fig. S16).
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Fig. 2. Condensin II prevents centromeric clustering and keeps apart het-
erochromatin domains. (A) Hi-C matrices of the depicted genotypes in Hap1
cells. Chr., chromosome. (B and C) Immunofluorescence of centromeres (CREST)
and DNA [4′,6-diamidino-2-phenylindole (DAPI)] (B), as quantified in (C). (D) Difference
in DamID score relative to distance to centromere. Zoom-in includes 95% confidence

interval of the mean in gray. KO, knockout; WT, wild type. (E) Immunofluorescence
of centromeres (CREST), nucleoli (nucleolin), and DNA (DAPI). (F) Quantification
of the fraction of centromere intensity within 0.4 mm of nucleoli, as shown in (E).
(G and H) Immunofluorescence of centromeres (CenpA), heterochromatin
(H3K9me3), and DNA (DAPI) (G), as quantified in (H). ****P < 0.0001.
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Results previously obtained in other species
support themodel that condensin II plays ama-
jor role in three-dimensional (3D) genome orga-
nization. In Arabidopsis, condensin II regulates
the spatial relationshipbetween ribosomalDNAs
(rDNAs) and centromeric regions (8,9),whereas
in mouse cells, condensin II regulates the dis-
tribution of chromocenters (10). Fruit flies lack
a condensin II subunit and exhibit centromeric
clustering (Fig. 1). Additional depletion of the
remaining condensin II subunits in flies affects
the spatial distribution of pericentromeric het-
erochromatin and leads to intermixing of chro-
mosome territories, further strengthening the
existing Rabl-like features (11, 12).
Next, we investigated the effects of con-

densin II loss on human genome architecture
in greater detail. To identify DNA segments
associated with the nuclear lamina [lamina-
associated domains (LADs)], we performed
DamID of LaminB1 (13) (fig. S17A). LADs
localizing up to 25 Mb from the centromeres
appeared to move away from the lamina
(Fig. 2D and fig. S17, B and C). Centromere re-
positioning in absence of condensin II thus
also moderately affects the lamina association
of the regions flanking the centromeres.
In fruit flies, centromeres cluster and localize

to the nucleolus (14). In DCAP-H2 human cells,

centromeres also cluster in or around the
nucleolus (Fig. 2, E and F). However, disrupt-
ing nucleolar structure did not affect cen-
tromeric clustering (fig. S18, A and B). The
clustering of centromeres at the human nucle-
olus is likely because rDNA sequences, which
are the genomic component of the nucleolus,
often lie near centromeres in the human ge-
nome (on the short arm of acrocentric chromo-
somes) (fig. S18C).
Regions surrounding centromeres are en-

riched for heterochromatin and cluster upon
condensin II depletion in mice and fruit flies
(10, 11). Similarly, in DCAP-H2 cells, condensin
II deficiency led to clustering of H3K9me3-
containing heterochromatin (Fig. 2, G and H),
which indicates that condensin II plays a con-
served role in the spatial organization of this
repressive epigenetic mark. Condensin II defi-
ciency did not affect smaller-scale 3D genome
organization at the level of chromatin loops
(fig. S19, A and B). Also, compartmentalization
was onlymildly affected, specifically in regions
surrounding the centromeres (fig. S19, C and
D). Thus, large-scale reorganization does not
necessarily bring about major changes in
smaller-scale structures.
RNA sequencing revealed that condensin II

deficiency affected the expression of only a

fraction of genes (Fig. 3, A and B), whichwere
enriched within LADs (Fig. 3C) and near LAD
borders (fig. S20, B and C). The down-regulated
genes moved toward the lamina (Fig. 3D).
Genes that are near or within LADs could
potentially occupy the space that is vacated by
the centromeres moving to the nuclear interior
upon condensin II loss. The increased lamina
association of these genes may, in turn, lead to
their transcriptional repression, although the
gain in lamina interactions could also be the
consequence of the reduced expression of these
genes (15, 16) (Fig. 3E).
Thus, condensin II controls the architecture

of the interphase genome, but whether it does
so by acting in interphase remained unclear.
We therefore acutely depleted condensin II in
HCT116 cells (17) at the G1-S cell cycle phase
transition and either halted the cells before
mitotic entry or allowed the cells to progress
throughmitosis (Fig. 4, A and B, and fig. S21A).
When condensin II–depleted cells were halted
before mitosis, centromeres did not cluster,
which is consistent with condensin II deple-
tion in postmitotic cells not changing the 3D
genome (18). By contrast, progression through
mitosis led to clear centromeric clustering
in the subsequent G1 phase. This suggests
that condensin II acts in mitosis, or directly
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Fig. 3. Massive 3D genome changes hardly affect gene expression.
(A) Gene expression of wild type relative to DCAP-H2. Unaffected genes are
depicted in gray, up-regulated genes in blue, and down-regulated in red.
(B) Number of genes in each category. (C) Percentage of active genes

overlapping with LADs. (D) Intersection of differences in gene expression
with differences in lamina association, depicting active genes within LADs.
(E) Schematic model of centromeres (red) moving to the inner nucleus and
silenced genes that now localize to the lamina.
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thereafter, to establish 3D genome organiza-
tion for the next interphase (fig. S21B).
In mitosis, condensin II extrudes loops to

compact chromosomes in a lengthwise man-
ner (19–21). We used physical simulations to
investigatewhether this activity of condensin II
can affect centromere clustering. In these sim-
ulations, chromosomes are polymers bisected
by a centromere. These chromosomes are shaped
by two forces: (i) the ideal chromosome poten-
tial that models lengthwise compaction by
condensin II (22, 23) and (ii) centromeric

self-adhesion, which models heterochromatin’s
tendency to cluster (24–26) and stabilizes inter-
centromeric contacts in our setup. We simu-
lated 10 chromosomes with fixed centromere
self-adhesion and decreased lengthwise com-
paction tomodel condensin II depletion (Fig. 4,
C to G; fig. S22; and table S9).
Under high lengthwise compaction (i.e.,

intact condensin II), chromosomes form non-
overlapping entities and hinder the spatial
clustering of centromeres. Correspondingly,
lower lengthwise compaction (i.e., impaired

condensin II) leads to chromosome inter-
mingling and centromere clustering. This
physical model illustrates how the loss of
lengthwise compaction might explain the ob-
served clustering of centromeres.
Condensin I and condensin II together drive

mitotic chromosome condensation (fig. S23,
A and B). In contrast to condensin II, con-
densin I primarily decreases the width of the
chromosome (19, 20). If condensin II–driven
lengthwise compactionwere the key factor lead-
ing to territorialization, rather than chromosome
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Fig. 4. Centromeric clustering is counteracted by lengthwise compaction
and requires mitosis-to-interphase transition. (A) Quantification of
centromeric foci before or after mitotic progression with or without auxin-
mediated condensin II degradation. Fluorescence-activated cell sorting (FACS)
plots depict cell cycle stages. Outliers (>60) were truncated and depicted
as squares. (B) Example images of G1 cells as quantified in (A). (C to G)
Simulation modeling using ten polymer chains as chromosomes. (C) Number
of centromere clusters upon varying lengthwise compaction (strength
of the ideal chromosome term). WT and DC correspond to higher and lower
lengthwise compaction, recapitulating the experimental data observed in
wild type and DCAP-H2 cells. (Top) Representative models for both states.

(D) Representative simulation snapshots depicting ten chromosomes in
different colors. (E) Quantification of the ratio of cis contacts. (F) Simulated
Hi-C matrices depicting contacts between the respective chromosomes.
(G) Quantification of the proportion of trans-centromeric contacts. (H) Model
for the establishment of type-I and type-II genome architectures. Having
shorter chromosomes during mitosis tends to interfere with adhesion
between centromeres, leading to separate centromeres and territorial genome
architecture in the subsequent interphase. Reducing lengthwise compaction,
for example by condensin II disruption, leads to enhanced centromere
clustering, loss of chromosome territories, and a Rabl-like genome architecture.
****P < 0.0001; ns, not significant.
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condensation in general, then condensin I de-
pletion would not lead to a shift from ter-
ritorial to Rabl-like architecture. We found
that acute depletion of the condensin I sub-
unit CAP-H did not lead to centromeric clus-
tering (fig. S23, C and D).
Evolution has performed an experiment in

which chromosome length varies as a result
of chromosome fusions rather than the loss of
condensin II. Specifically, the Chinesemuntjac
has 46 short chromosomes that have merged,
in the closely related Indian muntjac, into
six chromosomes (in females). By assembling
the muntjac genomes, we found that the no-
table increase in chromosome length in the
Indian muntjac coincides, as expected, with
the appearance of centromeric clustering
(fig. S25).
Taken together, a model emerges in which

condensin II establishes interphase 3D genome
architecture at the scale of whole chromo-
somes. We hypothesize that (i) centromeres
tend to adhere to one another, a process that
is facilitated by proximity during and shortly
after mitosis; (ii) the shortening of chromo-
somes interferes with this adhesion, enabling
the centromeres to spread out over the newly
formed nuclei; and (iii) chromosome territo-
ries emerge as a by-product of the resulting
chromosomal separation (Fig. 4H).
The role of condensin II in establishing the

overall architecture of the genome appears to
be among the most ancient capabilities defin-
ing genome folding in the eukaryotic lineage.
Changes in condensin II have likely con-
tributed to notable shifts from chromosome
territories to Rabl-like features throughout
the tree of life. As our exploration of the tree
of life continues, one of the many fruits will
be a deeper knowledge of our own cellular
machinery.
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they carry a functional condensin II gene.
or compartment formation. Whether the structure of the 3D genome varies across species may thus depend on whether
experimental loss of condensin II in human cells promotes the formation of centromere clusters but has no effect on loop 
polarized state maintaining individual chromosomal territories within the cell, a difference attributed to condensin II. An
and plants. At interphase, species' telomeres and centromeres either clustered across chromosomes or oriented in a 

 mapped three-dimensional (3D) genome organization in 24 eukaryote species, including animals, fungi,et al.Hoencamp 
conservation and evolutionary history of the mechanisms regulating genome structure across species are lacking. 

The conformation of chromosomes within the nucleus can reflect a cell's type or state. However, studies of the
Organismal evolution of the 3D genome
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